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Probe storage.
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Storage density trends.

Magnetic storage density is
expected to reach 1 Tb/in2

Further growth is limited by
the superparamagnetic ef-
fect.

Probe storage has already demonstrated 1 Tb/in2 with
4 Tb/in2 demonstrators being developed.
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IBM’s Thermomechanical Probe Storage Concept

Thin polymer medium is positioned under the array of
64 × 64 atomic force probes.

Each probe operates in its own field of size
100µm × 100µm. Tip radius ∼ 10 nm.

Encoded data are stored as pits on the surface of the
medium.
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Read/Write

Writing: the probe’s tip is
heated and pressed into
the softened polymer film

Reading: The probe
heated to a smaller T
follows the landscape of
the polymer surface

A probe inserted into a pit is cooler than the probe
whose tip touches the surface. These variations are
captured using a thermo-resistive sensor
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Channel Model
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Non-linear Inter-symbol Interference (ISI)

Ik(xk−1, xk, xk+1)

= xk

+(α − 1)xkxk+1

+βxkxk−1

Ideal readout at the k-th
sampling point

A signal due to an isolated pit at
k

Reduction in the signal strength
due to plastic displaced from the
(k + 1)-st pit

Signal enhancement due to
plastic displaced into the (k − 1)-
st pit

For experiments at 1 Tb/in2, α ≈ 0.8, β ≈ 0.1

α, β depend on write parameters, tip shape and
medium material properties

Santa Fe, March 2008 – p.8/25



Position Jitter

Jitter = positioning error

J << pit width

∆Ik ∼ J2
k

Over 40% of total noise
power is due to data-
dependent position jitter

rk ≈ Ik ·
(

1 −
(σj

h Wk

)2
)

+ σeNk,

Wk, Nk are independent normal r. v.’s, h is the pit’s radius

of curvature; σj , σe are the strengths of jitter and electronics

noise correspondingly
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Statistics of Signal Distortion

Let ηk = rk−Ik
Ik

Let ǫ =
σj

h , δ = σe
Ik

.

ρ(η) ∼ Const−
|η|1/2

e
2 η

ǫ2 , η << −ǫ2

ρ(η) ∼ Const+
η1/2 e

− η2

2δ2 , η >> δ

Signal distortion is non-Gaussian

Santa Fe, March 2008 – p.10/25



Detection/decoding
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The currently employed scheme

Reed-Solomon

Decoder


Bit estimates


Decoded data


Probes

Threshold detectors


Read channel: hard output
threshold detector

ECC: Reed-Solomon code

HDD read channel: a sector of data is detected as the
most likely binary string given the digitised received
string using Viterbi algorithm.

A significant increase of recording density beyond
1 Tb/in2 would require a significantly more advanced
detection decoding scheme
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Desired scheme

LDPC

Decoder


LLR’s


Decoded data (to end

user or to outer


decoder)


Probes

Probabilistic threshold detectors


ln(p(1)/p(0))


ln(p(1)/p(0))


ln(p(1)/p(0))


ln(p(1)/p(0))


ln(p(1)/p(0))


Read channel: soft output
data detector

ECC: Soft input decoder for
LDPC, LDPC ◦RS, SPC ◦
RS, etc. code

MAP detector per probe is too complex

Any easy ways to generate soft outputs?
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Soft detection via forward message
passing
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Soft threshold detector.

LLRk
def
= ln Pr(xk=1|rk)

Pr(xk=0|rk)

Bayes
=== ln Pr(rk|xk=1)

Pr(rk|xk=0)

Threshold bit estimate: x̂k = signLLRk

Information contained in rk′: k′ 6= k is not used in the
computation of LLRk.
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Forward message passing detector.

Assume that rk depends on xk, xk±1 only.

Let LLRk = ln
(

Pr(xk=1|~rk+1)
Pr(xk=0|~rk+1)

)

,where

~rk = . . . rk−3rk−2rk−1rk. Then

Pr(~rk | xk+1, xk, xk−1) = 1
2Pr(rk |

xk+1, xk, xk−1)
∑1

xk−2=0 Pr(~rk−1 | xk, xk−1, xk−2)

Message is an 8-dimensional vector of probabilities
Pr(~rk | xk+1, xk, xk−1) propagated left-to-right using
transfer matrix built out of conditional probabilities
Pr(rk | xk+1, xk, xk−1).
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Transition matrix

T =


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where α’s and β’s are conditional probabilities.

Tk is time-dependent. But, there are 4 time independent
right null vectors and 2 time independent left null
vectors.

Forward recursion can be reduced to a 3 × 3 recursion
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Reduced recursion.
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Performance analysis
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Mutual information

Mutual info between data and output LLR’s:

I(X,L) = EX

(

∫ ∞
−∞ dlρ(l | x)log2

(

ρ(l|x)
ρ(l)

))

FMP detector resolves the asymmetry of LLR’s.
Channel capacity is increased by about 5% compared to
THD channel
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Bit error rate

The performance of FMP (green curve) matches the
performance of Viterbi detector (black curve)
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Sector error rate: large deviations

Outer code: RS(w, τ, nN). Inner code: block size is nw + t bits.
Symbol error counts for different IC blocks are independent
identically distributed random variables. Let
~p = {p0, p1, . . . , pn} be the probability distribution of symbol
error count ξ in an IC block such that E(ξ) < τ . Then

ln(Pse)

N
ր −DKL (~q||~p) , as N → ∞.

where ~q is the effective probability distribution given by

qk =
pkµ

k

∑n
m=0 pmµm

, k = 0, 1, . . . , n

and µ is the unique positive solution of the critical point equa-

tion,
∑n

k=0 (k − nτ) pkµ
k = 0; DKL is relative entropy
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Sector error rate comparison
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Conclusions-I

Probe storage DSP is challenging to the extreme: on
the one hand we have a very noisy channel, on the
other - the allowed complexity of read channel per
probe is severely restricted

Forward message passing detector allows a generation
of soft outputs at the complexity cost of a 3-state Viterbi
detector without traceback unit with the performance
matching that of the full 4-state Viterbi detector matched
to the non-linear thermomechanical channel

Large deviations analysis leads to an analytic
expression for SER in probe storage, which is useful for
sufficiently short inner codes

Soft input SPC + RS code outperforms hard input RS

code of the same rate by about 1 dB at SER = 10−15.
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Conclusions-II

A twist in the tale: asymptotically, RS code is better!

Research supported by PROTEM FP6 European
network grant

The reported results will be published in the
proceedings of ICC2008.
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